143 research outputs found

    Thermal Atomic Layer Etching of MoS\u3csub\u3e2\u3c/sub\u3e Using MoF\u3csub\u3e6\u3c/sub\u3e and H\u3csub\u3e2\u3c/sub\u3eO

    Get PDF
    Two-dimensional (2D) layered materials offer unique properties that make them attractive for continued scaling in electronic and optoelectronic device applications. Successful integration of 2D materials into semiconductor manufacturing requires high-volume and high-precision processes for deposition and etching. Several promising large-scale deposition approaches have been reported for a range of 2D materials, but fewer studies have reported removal processes. Thermal atomic layer etching (ALE) is a scalable processing technique that offers precise control over isotropic material removal. In this work, we report a thermal ALE process for molybdenum disulfide (MoS2). We show that MoF6 can be used as a fluorination source, which, when combined with alternating exposures of H2O, etches both amorphous and crystalline MoS2 films deposited by atomic layer deposition. To characterize the ALE process and understand the etching reaction mechanism, in situ quartz crystal microbalance (QCM), Fourier transform infrared (FTIR), and quadrupole mass spectrometry (QMS) experiments were performed. From temperature-dependent in situ QCM experiments, the mass change per cycle was āˆ’5.7 ng/cm2 at 150 Ā°C and reached āˆ’270.6 ng/cm2 at 300 Ā°C, nearly 50Ɨ greater. The temperature dependence followed Arrhenius behavior with an activation energy of 13 Ā± 1 kcal/mol. At 200 Ā°C, QCM revealed a mass gain following exposure to MoF6 and a net mass loss after exposure to H2O. FTIR revealed the consumption of Moāˆ’O species and formation of Moāˆ’F and MoFx=O species following exposures of MoF6 and the reverse behavior following H2O exposures. QMS measurements, combined with thermodynamic calculations, supported the removal of Mo and S through the formation of volatile MoF2O2 and H2S byproducts. The proposed etching mechanism involves a two-stage oxidation of Mo through the ALE halfreactions. Etch rates of 0.5 ƅ/cycle for amorphous films and 0.2 ƅ/cycle for annealed films were measured by ex situ ellipsometry, Xray reflectivity, and transmission electron microscopy. Precisely etching amorphous films and subsequently annealing them yielded crystalline, few-layer MoS2 thin films. This thermal MoS2 ALE process provides a new mechanism for fluorination-based ALE and offers a low-temperature approach for integrating amorphous and crystalline 2D MoS2 films into high-volume device manufacturing with tight thermal budgets

    Adsorbate-induced structural changes in 1-3 nm platinum nanoparticles

    Get PDF
    We investigated changes in the Ptā€“Pt bond distance, particle size, crystallinity, and coordination of Pt nanoparticles as a function of particle size (1ā€“3 nm) and adsorbate (H2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The āˆ¼1 nm Pt nanoparticles showed a Ptā€“Pt bond distance contraction of āˆ¼1.4%. The adsorption of H2 and CO at room temperature relaxed the Ptā€“Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H2 improved the crystallinity of the small Pt nanoparticles. However, CO adsorption generated a more disordered fcc structure for the 1ā€“3 nm Pt nanoparticles compared to the H2 adsorption Pt nanoparticles. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system

    Atomic layer deposition applications 12

    Get PDF
    The objective of the current study was to explore the role of ABCB1 and CYP3A5 genetic polymorphisms in predicting the bioavailability of tacrolimus and the risk for post-transplant diabetes. Artificial neural network (ANN) and logistic regression (LR) models were used to predict the bioavailability of tacrolimus and risk for post-transplant diabetes, respectively. The five-fold cross-validation of ANN model showed good correlation with the experimental data of bioavailability (r2 = 0.93-0.96). Younger age, male gender, optimal body mass index were shown to exhibit lower bioavailability of tacrolimus. ABCB1 1236 C>T and 2677G>T/A showed inverse association while CYP3A5*3 showed a positive association with the bioavailability of tacrolimus. Gender bias was observed in the association with ABCB1 3435 C>T polymorphism. CYP3A5*3 was shown to interact synergistically in increasing the bioavailability in combination with ABCB1 1236 TT or 2677GG genotypes. LR model showed an independent association of ABCB1 2677 G>T/A with post transplant diabetes (OR: 4.83, 95% CI: 1.22-19.03). Multifactor dimensionality reduction analysis (MDR) revealed that synergistic interactions between CYP3A5*3 and ABCB1 2677 G>T/A as the determinants of risk for post-transplant diabetes. To conclude, the ANN and MDR models explore both individual and synergistic effects of variables in modulating the bioavailability of tacrolimus and risk for post-transplant diabetes

    Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    Get PDF
    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications
    • ā€¦
    corecore